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Executive summary

The objective of Work Package 7 (later on WP7) is to ensure the preservation of security
of long-life evolving systems by means of model based tests.
Model-Based Testing (MBT) involves the automatic derivation of test cases, in whole or in
part, from a model that describes at least some of the aspects of the System Under Test
(SUT). Therefore, MBT is the automation of a black-box test design. A MBT tool uses
various algorithms and strategies to generate tests from a behavioral model of the SUT. Such
a model is usually a partial representation of the SUT’s behavior, partial because the model
abstracts away some of the implementation details. Test cases derived from such a model are
functional tests on the same level of abstraction as the model. The generated test cases are
grouped together to form an abstract test suite (or test repository). Although model-based
testing has a high potential of reducing test costs and increasing test quality, this technique
is adopted slowly in industrial practice. This is in particular due to the important question
of managing changes and evolutions in the testing process.

Key issues facing SecureChange WP7 are to address the life-cycle of an automatically gener-
ated test repository, dedicated to test security aspects of the SUT, for evolving systems.
This document provides some criteria to evaluate model-based testing approaches with re-
spect to evolution and security of systems. We present a survey of the state of the art of
MBT methods and introduce the background technology that constitutes the starting point
of the project.

This document consists of four parts. The first chapter concern the analysis of MBT chal-
lenges for evolving systems. We introduce several criteria to evaluate existing MBT methods
in the context of automated testing of evolving systems for security requirements.
The second chapter is a state of the art of MBT approaches, including a taxonomy based on
their characteristics.
The third chapter give a technical background of the WP7 partners that will be used to
address SecureChange challenges.
The last chapter is the summary of identified key issues that will be resolved by the project.
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Abbreviations and Glossary

Abbreviations

Abbreviations References
API Application Programming Interface
FSM Finite State Machine
ISTQB International Software Testing Qualifications Board
MBT Model-Based Testing
REQ Requirement
SUT System Under Test
TTS Telling TestStories

Table 1: Abbreviations used in the document
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Glossary

Term Definition
Adapter Piece of code to concretize logical tests into physical tests

Evolution Test Suite Test Suite targeting SUT evolutions
Logical Test See Test Case
Model Layer Link of model’s operations in Test Scenario

Model-Based Testing Process to generate tests from a behavioural model of the SUT
Status of Test Case new, obsolete (outdated, failed), adapted, reusable (reexecuted,

unimpacted)
Physical Test See Test Script
Requirements Collection of functional and security requirements

Regression Test Suite Test Suite targeting non-modified part of the SUT
Stagnation Test Suite Test Suite targeting removed part of the SUT

System Model Model of the SUT used for development
Test Case A finite sequence of test steps

Test Intention User’s view of requirement into Test Scenario
Test Model Dedicated model for test capturing the expected SUT behaviour
Test Suite A finite set of test cases
Test Script Executable version of a test case

Test Scenario A test generation strategy
Test Sequence See Test case

Test Step Operation’s call or verdict computation
Test Strategy Formalization of test generation criteria
Test Objective High level test intention

Table 2: Glossary
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1. Challenges of MBT for evolving systems

This chapter presents the challenges for model-based testing approaches in evolving systems.
The first section presents key challenges introduced by testing security aspects of long-life
evolving systems. The second section defines criteria to evaluate existing Model-based testing
methods in this context.

1.1 Problems Statements

Model-based testing renews the whole process of functional software testing: from business
requirements to the test repository, with manual or automated test execution. It supports
the phases of designing and generating tests, documenting the test repository, producing and
maintaining the bi-directional traceability matrix between tests and requirements, and accel-
erating test automation. Those approaches are a field of active researches from at least the
mid-90s leading to commercial solutions such as Conformiq Qtronic, Microsoft SpecExplorer
or Smartesting Test Designer.

Model-based testing (MBT) is an increasingly widely-used technique for automating the gen-
eration and execution of tests. There are several reasons for the growing interest in using
model-based testing:

• The complexity of software applications is constantly increasing and the user’s aversion
to software defects is greater than ever. Due to this, functional testing has to become
more effective at detecting bugs;

• The cost and time of testing is already a major proportion of many projects (sometimes
exceeding the costs of development). There is a strong tendency to investigate methods
like MBT that are able to decrease the overall cost of testing by the automatic derivation
as well as execution of tests.

• The MBT approach and the associated commercial and open source tools are now
mature enough to be applied in many application areas, and empirical evidence is
showing that it can provide a good ROI [81].

Long-life evolving systems introduce specific challenges that are not supported by current
approaches. Those challenges are:

• Test repository maintenance and management with evolving requirements. In that case
a full re-creation of the repository after each evolution is not acceptable. The testing
team needs a stable repository to ensure a continuous validation process. The team
must keep track of any modification to the test repository issued by the fault analysis
on the System Under Test (SUT).
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• Impact analysis on the test repository should provide a test classification for the system
after evolution steps (regression, evolution, stagnation tests).

• MBT security testing has been a vast field of research particularly in the context of
access control policies. But there are no previous work on testing security properties of
evolving systems.

• Tracing requirements in a MBT approach for testing security properties of evolving
systems.

Those challenges will be addressed by WP7 partners. The following section will provide a
list of evaluation criteria that will allow the characterization of MBT approaches with respect
to those challenges.

1.2 Evaluation criteria for existing methods

Name Description Evaluation
Stability of test
repository

Ability to minimize the impact of
evolutions on the test repository in
term of creation / deletion of tests

scale 1..3 (1: complete
re-creation, 3: maxi-
mum tests re-use)

Traceability of
changes

Ability to trace an evolution from re-
quirements to test repository

scale 1..3 (1: no trace-
ability, 3: full traceabil-
ity)

Impact analysis Ability to inform the user on poten-
tial impacts of an evolution on the
test repository

scale 1..3 (1: no impact
analysis, 3: full impact
analysis)

Test suite quali-
fication based on
changes

Ability to create test suite based on
change type

qualification / no quali-
fication

Table 1.1: Evaluation criteria for change

In [83], Utting and al. propose a general taxonomy of MBT approaches. This paper
defines six characteristics based on the classical MBT life-cycle (modeling, test generation,
test execution). However, those characteristics does not provide dedicated evaluation criteria
for MBT applied to long-life evolving systems.

Name Description Evaluation
Traceability of se-
curity properties

Ability to provide bi-directional
traceability between security prop-
erties and generated test cases man-
aged in the test repository

scale 1..3 (1: no trace-
ability, 3: full traceabil-
ity)

Completeness of
security testing

Ability to manage the test of func-
tional security properties and to find
security vulnerabilities (threats and
attacks)

both / functional se-
curity properties only
/ security vulnerabili-
ties only

Table 1.2: Evaluation criteria for security
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In the context of the SecureChange project, we propose six new criteria to be used to
evaluate MBT approaches defined on two dimensions that are:

• Change: criteria to evaluate how MBT methods deal with evolutions in the context
of long-life evolving systems presented in Table 1.1. There are four criteria associated
with Change to take into account evolution all around the testing process.

• Security: criteria to evaluate how MBT methods deal with security properties in the
context of long-life evolving systems presented in Table 1.2. There are two criteria
associated with Security to establish confidence in the generated specific security tests.

In section 4.1, those criteria are used to compare several MBT methods to test long-life
evolving systems. The following chapter proposes a state of the art of MBT approaches.

D7.1 Eval. Methods & Principles | version 6.4 | page 11 / 50



2. State of the Art

We base our study of the state of the art on a guideline. This guideline is a taxonomy of
Model-Based Testing methods proposed by Utting and al. [83]. We can analyze each existing
approaches to compare them. We identify elements that help our approach to take into
account evolution and security of evolving systems.

The following two sections of this chapter first describe the taxonomy, and then present
the existing approaches which we have taken into account.

2.1 Taxonomy of MBT approaches

We present in this section a taxonomy of the Model-Based Testing approaches [9], that pro-
vides an overview of the state of the art. This taxonomy is extracted from [83].

2.1.1 Overview of the Model-Based Testing Process

The global process of Model-Based Testing is depicted in Fig. 2.1. It is composed of 5 main
steps, that are now described.

Figure 2.1: The Model-Based Testing Process

1. The first step consists in designing a formal model from the initial requirements (infor-
mal). It is mandatory that this model takes into account the (functional, security, etc.)
requirements that the system must fulfill.
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2. The second step consists in choosing a test selection criterion that will make it possible
to exploit the model content so as to produce the test cases. These criteria may aim at:
the coverage of a model functionality, the coverage of the model states/data, a random
walk in the model, highlighting a given set of faults, etc.

3. The third step is the formalization of the test cases, which gives a high level description
of the test cases that one wants to generate. It represents an intermediate step, that
formalizes the test selection criterion so as to make it operational (to be automatically
applied on the model).

4. The fourth step consists in the generation of the test cases themselves. These tests are
said to be abstract since they are expressed at the model level, using the model entities
(data and operations). This step can be automated by a test generator that is able to
deal with test case formalization produced at step 3. The resulting abstract test cases
are made to fulfil the chosen test selection criterion.

5. The fifth and final step consists in executing the tests on the System Under Test (SUT)
and assigning the test verdicts. This is usually done in two steps.

5–1 Concretization of the abstract tests. This substep consists in translating the
abstract test cases into concrete calls to the SUT interfaces.

5–2 Verdict assignment. This substep consists in interpreting the results obtained
from the SUT in response to the stimuli. First, these results are translated back
into the formalism of the model, in order to be compared to the expected results
that were computed from the model. A conformance relationship is used to check
that the results conform to each other.

Notice that, in case of online testing (i.e. when tests are generated and played at the
same time on the SUT), this step is coupled with step 4.

2.1.2 Taxonomy of the MBT Approaches

We briefly review the classification proposed in [83]. This classification takes into account
three main aspects, that are decomposed into subcategories:

• the model, that is seen as a scope, the characteristics of the modelled elements, the
modelling paradigm,

• the test generation technique, involving test generation criteria and an underlying test
generation technology,

• the execution of the tests, that can be either online (tests are generated and played on
the SUT at the same time), or offline (tests are generated and stored in a test repository,
before being translated to be run subsequently on the SUT.

We now detail the first two aspects.

Model

As explained previously, the models are classified according to three criteria.
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Scope The model scope defines whether the model is input-only, or input-output.
Input-only models are models that only specify valid inputs for the system without pro-

viding any information on the expected outputs. Such models can be used to generate test
data (but, not necessarily test cases). However, they can not be used for conformance testing.
Nevertheless, these kinds of models can notably be used when performing robusteness testing,
when the test objective is to ensure that the system does not crash.

On the contrary, input-output models specify both valid inputs and expected outputs
which makes them a suitable choice for conformance testing.

Characteristics The model characteristics answer the three following questions:

• Is the model timed or untimed?

• Is it a determinstic or non-deterministic model?

• What is the dynamics of the model: continuous time, discrete time, or both ?

Modelling paradigms The modeling paradigms are the following.

• State-based notations: these notations describe a system using a set of state variables
and operations modifying them. Each operation is specified using preconditions (de-
scribing the licit uses of the operations) and postconditions (describing the effect of
the operation). Some state-based notations: B [1], Z [76], VDM [55], JML [16], UM-
L/OCL [73, 85].

• Transition-based notations: these notations describe the transitions between the states
of the system. These are usually graphical notations, using nodes to represent states,
and edges to represent transitions. These formalisms can be extended to take into ac-
count state variables, guards on the transitions, etc. Some transition-based notations:
finite state machines (FSM) [63], (input-output) labelled transitions systems [80], stat-
echarts [46].

• History-based notations: these notations describe a system through its acceptable
traces. Such notations make it possible to address different notions of time (discrete
or continuous, linear or tree-based, etc.) The message sequence charts (MSC) [47]
formalism falls into this category.

• Functional notations: these notations describe the system using a set of mathematical
functions (first order functions for algebraic specifications [41]), or of higher order (as
in HOL).

• Operational notations: these notations describe the system as a set of executable pro-
cesses that are run in parallel. These notations cover the process algebra, CSP, CSS, or
Petri Nets [70].

• Stochastic notations: these notations describe the system using a probabilistic model
of the events and input data. They are mainly used for modelling the SUT environ-
ment rather than the SUT itself. For example, Markov chains can be used to model
operational profiles of the SUT.

• Data-flow notations: these notations are focused on the data flow rather than the control
flow. Lustre [68] or Matlab Simulink [11] are classified into this category.
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It is worth noticing that some notations are not restricted to a single modelling paradigm,
e.g. UML combines a state-based formalism (using OCL constraints) and a transition-based
formalism (using the statecharts diagrams)

Test Generation

The test generation aspects rely on two elements: the test selection criteria that can be
applied, and the test generation technology that is used to compute the test cases.

Test Selection Criteria The considered test selection criteria are the following:

• Structural model coverage: this criterion depends on the modelling formalism that is
used. On pre/postconditions models, it aims at covering the cause-effects, the disjunc-
tions in the preconditions, etc. On transition based models, it aims at covering the
entities of the automaton (states, transitions, etc.). On textual models, some of the
structural testing criteria can be revisited and adapted to cover the code of the model.

• Data coverage: it represents the test data selection strategy, that can be very simple
(random values), or more complicated (e.g. involving pairwise testing or a boundary
value analysis).

• Requirement coverage: this criterion uses the requirements (functional or security re-
quirements) to target specific parts of the model (e.g. states, transitions, transitions
sequences, etc.) to be exercised.

• Test cases specification: this criterion consists, for the user, to provide a test scenario
that he wants to execute on the model. This scenario can be expressed in a textual
way[32, 22], or using an automaton [54].

• Random or stochastic criteria: these criteria aim at the coverage of an operational profile
of the system. Different probabilities of usage are associated to different parts of the
model. The test generation process will produce tests accordingly to these probabilities.

• Fault-based criteria: these criteria aim at using a fault model that has to be covered by
the test generation approach, meaning that the tests are produced so as to detect all
the faults that are provided in the fault model.

Test Generation Technology The test generation technology is the technique that is
used to generate the test cases. We consider six technologies.

• Random generation: the test cases are computed in a random manner for selecting the
operations and their associated inputs’ values.

• Search-based algorithms: this technique uses specific graph algorithms (e.g. the rural
chinese postman), that aim at achieving the selected test selection criterion. Such
algorithms also include genetic algorithms.

• (Bounded) Model Checking: this technique consists in an exploration of the state space
of described by the model, using a model-checking tool. This techniques usually involves
the use of a property (invariant or temporal) that is given as an input to the model
checker for producing a trace that can be used as a test case.
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• Symbolic execution: it consists in simulating the execution of the system (or model) by
replacing the input values by symbolic variables.

• Theorem proving: this technique consists in using a a theorem prover to produce the
test cases.

• Constraint solving: it similarly consists in using constraint solving techniques to gener-
ate test data, or test cases, coupled with search algorithms.

Take into account that some tools may combine several test generation technologies in
order to produce the test cases.

We now review some well-known approaches of the literature.

2.2 Existing Approaches

An issue of model-based testing is to be able to measure and insure coverage from test to
the model. The intention guarantees only test coverage on model and not on the SUT. We
identified two kinds of criteria to insure coverage.

2.2.1 Static Criteria

Static criteria are based on two coverage approaches: control flow oriented and data flow
oriented.

Control flow graph criteria

A method for structural testing based on the control flow coverage is to propose a certain set
of paths in a graph in order to form test campaigns. Satisfying a structural testing method
for a given coverage criterion is therefore to find tests that enhance control paths (i.e. paths
of execution) and covering paths provided by the method adopted. There are several coverage
criteria based on graph control:

• Coverage of all-nodes or statement coverage,

• Coverage of all-arcs or decision coverage,

• Coverage of path and internal boundaries,

• Coverage of all i-paths,

• Coverage of all paths.

This list is ordered from the lowest to the highest criterion to test (except ’coverage of paths
and internal boundaries’ which is not classifiable). In general, the stronger this criterion is,
the higher is the number of test data to satisfy.

To cover criteria, a test suite must activate a dedicated part of specification as follows
[82]:

• State Coverage (SC): test suite must execute every reachable statement

• Decision Coverage (DC): test suite must ensure that each reachable decision is made
true by some tests and false by other tests. Decisions are the branch criteria that modify
the flow of control in selection and interaction statement.
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• Path Coverage (PC): test suite must execute every path to satisfy through the control
flow graph.

• Condition Coverage (CC): test suite achieves CC when each condition is tested with
a true result and also with a false result. For condition containing N conditions, two
tests can be sufficient to achieve CC.

• Decision/Condition Coverage (D/CC): test suite achieves D/CC when it achieves
both decision coverage (DC) and condition coverage (CC).

• Full Predicate Coverage (FPC): test suite achieves FPC when each condition is
forced to true and to false in a scenario where that condition is directly correlated with
the outcome of the decision.

• Modified Condition/Decision Coverage (MC/DC): This coverage strengthens
the directly correlated requirement of FPC by requiring the condition c to independently
affect the outcome of the decision d. A condition is shown to independently affect a
decisions outcome by varying just that condition while holding fixed all other possible
condition.

• Multiple Condition Coverage (MCC): test suite achieves MCC if it exercises all
possible combination of condition outcomes in each decision.

In [66], for code-based coverage we have PC > DC > SC, where C1 > C2 indicates that
every test suites satisfies C1 also satisfies C2. More generally as propose in [82], Figure 2.2
gives hierarchy between criteria.

Figure 2.2: The hierarchy of control flow coverage criteria

In some case, we can define dedicated criteria as transition based coverage criteria as in
Finite State Machines. These criteria are close to the previous criteria.

Data flow criteria

Data flow can be annotated with extra information regarding the definition and use of data
variables. Informally, a definition of a variable is a write to the variable and a use of a variable
is a read from it. For a given variable v, we say that (d, u) is a def-use pair if d is a definition
of v and u is a use of v, and there is a path from d to u that is free to other definitions of v.
So data flow criteria attempt to cover:
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• All-defs: the all-definition criterion requires a test suite to test at least one def-use
pair (d, u) for every definition d, that is, at least one path from each definition to one
of its feasible uses.

• All-uses: the all-uses criterion requires a test suite to test all def-use pairs (d, u). This
means testing all feasible uses of all definitions.

• All-def-use-paths: The all-def-use-paths criterion requires a test suite to test all def-
use pairs (d, u) and to test all paths from d to u.

We have this hierarchy:

All-def-use-paths→ All-uses→ All-defs

We can define complementary criteria with external additional information on the model.

2.2.2 Dynamic Criteria

Dynamic criteria are about the sequencing of states or actions of the model. Several ways
have been explored to express such criteria. For example in [6], the dynamic criterion is a
sequencing of states expressed as a temporal logic (PLTL) property. It is a sequencing of
actions expressed in the shape of an IOLTS in [17] and [52], or as a regular expression in [62].
We propose to describe a dynamic criterion, denoted as TP for Test Purpose, as a sequencing
of states and actions. Its semantics is an automaton whose states are interpreted as state
properties and whose transitions are labeled by action names. In our approach, the validation
engineer manually describes by means of a test purpose TP (see Def. 1) how he intends to
test the system, according to his know-how. We have proposed in [56] a language based on
regular expressions, to describe a TP as a sequence of actions to fire and states to reach
(targeted by these actions). States are described as state predicates. Actions can be given
either explicitly, or under the generic name $op.

Definition 1 (Test Purpose) A test purpose on a model M (with a set OM of operations)
is a tuple < QP , q0

P , TP , λP , QP , QfP > where :

• QP is a finite set of states,

• q0P is an initial state,

• Qf
P ⊆ QP is a set of accepting states,

• TP ⊆ QP × (OM ∪ {$op})×QP is the set of labelled transitions,

• λP ⊆ QP → PredM is a total function that associates with each state q a state predicate
denoted as λP (q)(⊆ PredM ).

In [57], we have presented a test generation approach from a TP and a B model, in which
every action is described by an operation. This method proceeds by unfolding all paths of the
automaton associated to the TP. Each path is a symbolic test, in the sense that the values
of the operation parameters are not defined. They will be defined by an instantiation phase
that uses constraint solving techniques and boundary valuation strategies. Also, the test
must be concretized to become executable on the SUT. This approach has been successfully
experimented on the industrial application IAS (Identification Authentication and Signature)
with Gemalto.
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Model-based testing and verification techniques

Research on model-checking has focused on the ability of these tools to fight the state space
explosion and on increasingly expressive modeling paradigms and languages to express the
property to be proved. Tools such as SPIN [49], Uppaal [61], CADP [33] have been developed
to prove reachability, safety, liveness and fairness properties expressed in temporal logics on
models in the form of communicating automata, timed automata models or process algebra.
A recent evolution is the use of SAT or SMT [7] solvers to perform bounded model checking
on infinite-state systems (SAL) [26], hybrid systems (HySAT [35], HyTech [48]) or Lustre
(Prover).

Another direction is probabilistic model-checking with tools like PRISM [60] whose goal
is to qualitatively or quantitatively evaluate the satisfaction of a property on a model.

Embedded systems have particular characteristics to be taken into account by V&V tools.
They are often cyclical reactive systems that must be modelled using specialized paradigms
such as synchronous languages, for which specialized tools such as Gatel [65] and Prover
have been developed. A combination of continuous and discrete-event behaviour may need
to be modelled, using the hybrid systems paradigm. This is treated by the HySAT model-
checker but the research on testing of hybrid systems is a very recent research area [2].
They are usually real-time systems that are represented with models that use an explicit
representation of time. Time properties can also be represented by a list of discrete events
that take place. This is possible in the analysis tools based on timed automata or Petri Nets
because timing properties are more susceptible to analysis than to test. The software used for
embedded systems is often concurrent meaning that all possible inter-leavings of concurrent
behaviour must be taken into account. Here again, analysis techniques are better developed
than test, although there is research on test of concurrent systems [74]. Because of the close
integration of software and hardware for embedded systems, software must often be tested in
the target environment, introducing problems of injection of test-case values and observability
of results. This has motivated the development of simulation languages such as SystemC [44]
and methodologies to test embedded software with hardware in the loop. The model of
computation introduced with the Signal synchronous language [10], then further developed in
the Polychrony [45] workbench and industrialized in RT-Builder [72], consists in considering
a median (polychromous or multi-clocked) model of computation into which heterogeneous
specification can be interpreted, and from which sequential or distributed real-time code can
be generated, used for analysis, simulation and test purposes.

2.2.3 Regression Testing

Changes in software artefacts throughout its lifecycle could make previously fixed bugs re-
appear or brake existing functionality [12]; therefore systems should be retested after a modi-
fication is made. Changes can happen in subsequent development phases or after the software
enters its maintenance phase. This retesting is usually referred as regression testing [9].

Regression testing is defined as “selective retesting of a system or component to verify
that modifications have not caused unintended effects and that the system or the component
still complies with its specified requirements” [29]. Therefore, the intention is to test whether
what was working before is still working, and previously fixed bugs do not reappear.

Regression testing can be performed on any testing level (i.e., module, integration, etc.),
and it can cover both functional and non-functional requirements. However, rerunning every
test after each of the modifications is not feasible, thus a trade-off must be made between
the confidence gained from regression testing and resources used for it [51]. For this reason,
several regression testing techniques were proposed over the years, e.g. to select only a subset
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of the regression test suite, what is relevant for the current change, or to identify those new
parts of the system, which are not covered by existing tests.

Regression testing techniques

The research in the field of regression testing focused on the following problems:

1. Regression test selection: select only tests from the regression test suite that are affected
by changes.

2. Test suite minimization: find a minimal subset of test cases that preserves the coverage
with respect to a certain criterion of the original test set.

3. Coverage identification: identify those parts of the system that need additional tests
due to the change.

4. Test prioritizing: optimize the order of tests according to some criteria, e.g. to run
those tests first which are more likely to uncover bugs or which need less time to run.

5. Test suite execution: automatically execute the test in an efficient way.

For regression test selection techniques the basic idea is similar to the one used in build
systems (e.g. the make tool), namely that at each build only those files need to be recompiled
that have been changed or depend on a file that have been changed. Similarly, to reduce the
size of the regression test suite, and thus reduce the time and resources needed to execute
it, one can select only those tests that work on changed parts of the system. Rothermel
and Harrold published a detailed survey paper about regression selection techniques [71].
They evaluated several techniques according to their inclusiveness, precision, efficiency and
generality. The surveyed techniques consisted of linear equation, symbolic execution, path
analysis, dataflow, program dependence graph, system dependence graph, modification based,
cluster identification, slicing, graph walk techniques, etc. Each technique had its strength or
weakness; some were able to uncover more errors, while some computed the selected tests
very fast.

As the test suite grows and changes, some tests become redundant. Test suite minimiza-
tion techniques remove test cases from the tests suite to retain only a minimal number of test
cases, while providing the same level of coverage than the original test suite [53]. However,
care must be taken, because removing too much test cases can reduce its fault detection
effectiveness.

Changes in the system can introduce new parts, which are not exercised by existing
tests. Coverage identification can map these parts of the system. Simple approaches can use
code coverage analysis tools [88] to uncover changed portions not touched by existing tests.
More advanced approaches typically use some sophisticated data structure, e.g. program
dependence graphs [34] that capture also data and control dependencies in the source code.

Test prioritization techniques can have several goals. One can optimize the order of the
test suite to increase the rate of fault detection, code coverage, or the rate at which high-
risk faults are detected. Rothermel et al. analyzed in [28] nine test prioritization techniques
(e.g. random, prioritize in order of coverage statements, etc). Their conclusion was that even
simple approaches (which are quite easy to implement and inexpensive) can improve the rate
of fault detection. However, the performance overhead of more sophisticated approaches was
still a bit high.

Test suite execution techniques concentrate on the automatic execution and evaluation of
test cases. These techniques moved into the practice over the years, as most of the current
testing tools have these functionalities.
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Tools for regression testing

Running a set of regression tests is usually part of the automatic build procedures of popular,
modern software development processes. However, industrial testing tools and platforms used
nowadays (both commercial [50, 69] and open source [27, 39] usually concentrate on just the
automatic execution of tests, collection of results, and creating test reports when talking
about regression testing. These tools usually do not use techniques presented in the previous
section, they do not perform test selection or minimization on the regression test suite.

On the other hand, several academic tools were reported to support research on different
regression testing techniques. The drawback of these tools is however that they are usually
not available to the public or not maintained any more.

TestTube [20] was a tool developed at AT&T Bell Laboratories for selective retesting of
C programs. It instruments the source code to capture which part of the system is covered
by each tests, then computes which tests are needed for a given modification.

Automatic Testing Analysis tool in C (ATAC) [86, 75] combines modification-based test
selection technique with test set minimization. It instruments the program when tests are
executed. Using the recorded information and costs assigned to tests the tool can select
tests that give maximal coverage, and later it can reduce this test set with respect to block
coverage.

Echelon [77] was a tool developed by Microsoft Research for test case prioritization. It
works on binary level to identify changes between the current and the previous version.
Echelon uses a fast binary matching technique instead of expensive data flow analysis. The
tool then prioritizes the tests according to the number of changed blocks they cover. Echelon
also lists those blocks, which are not covered by existing tests. The scalability of this tool
was tested using large binary production e.g. created for a project with one with 1.8 million
LOC.

Model based regression testing

The previous listed approaches mainly work on source code. Instead of identifying the depen-
dencies and effects of changes using code analysis techniques [23, 42, 43, 48], the analysis can
be carried out on the model level. These methods have the advantage, among other things,
that the models are usually smaller due to the operating on a higher abstraction level.

The approach presented in [19] generates regression test suites from Extended Finite State
Machine (EFSM) models. A dependency analysis searches for the effects of changes expressed
as elementary modifications (i.e. adding, deleting or changing transitions), and creates test
cases for the changed parts of the system. The method presented in [84] works similarly on
EFSM models, and its focus is to reduce an existing regression test suite based on dependency
analysis.

2.2.4 Model-Based Security Testing

This section presents the use of the Model-Based Testing process in the context of testing
the security of a system. This section is divided into two parts. The first one deals with
a functional approach in which the security aspects of the system are embedded within the
model and the subsequent test generation approach focuses on these aspects to exercise it.
The second part is dedicated to approaches that consider a modification of the model that
represents common attacks that can be performed on the system.
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Functional approach

A part of the security requirements w.r.t. a system can be expressed as security properties.
Here, we consider a context in which the security aspects of the system are embedded within
the functional model. From the model, a set of security properties is formally expressed.
These properties should hold on the model as it incorporates the security aspects. We do not
address here the question of formal verification of these properties on the model. This can
be achieved for example by model-checking. The aim of testing w.r.t. security properties is
to validate that the properties also hold on the implementation under test (SUT). A formal
verification of the SUT is usually out of reach due to its impracticable size.

Now that we are in the context of life-long evolving systems, change has to be taken into
account to see the impact it has on a test suite, dedicated to security. We present here an
approach from Fraser, Aichernig and Wotawa [36], to handle model changes for regression
testing purposes, or to update a test suite. The approach is based on model-checking. It aims
at reducing the effort of recreating test suites after a model is changed. It also allows for
minimizing the number of regression tests after a change. The considered models are Kripke
Structures, i.e. state/transition models. States are labelled with a set of atomic propositions
(on the state variables) that hold in this state. A transition relation models the passing from
a state to another. A test case is a finite prefix of a path of Kripke structure, with its oracle.
It can automatically be converted into a verifiable model [5]. A test suite is a set of test cases,
issued from a version of the model.

In case of a model evolution, some of test cases in the test suite issued from the previous
version of the model become invalid (i.e. obsolete), while others remain valid. Invalidity is
pronounced if the test case goes through a state or a transition that no longer exists in the
new model, or if it goes through a state whose labelling has changed.

Ideas presented in the paper permit to decide by model-checking if a test case are still valid
after a model change. After what valid test cases can be used as regression tests, whereas the
invalid ones can be used as non stagnation tests (to test that what was supposed to change has
indeed changed). Additionally, new test cases are created by either adapting the old (invalid)
ones (i.e. by re-computing their oracle), or by selectively creating new ones. Model-checking
is used to compute or adapt new test cases.

For the creation of the new tests, 3 methods are proposed in [36].
Adaptation. This first method adapts the old test to the new model, by re-computing

the oracle of tests from the new model. The test-case model contains a state counter State,
and a maximum value MAX. The adaptation can be obtained by querying the model-checker
with a particular property, which achieves a trace where the value of State is increased up
to MAX. The drawback of this method is that some new behaviours will not be covered, if
there are no related obsolete test cases.

Update. The update method is based on trap properties [40]. It is a generalisation
of [87] on trapping differences between two versions of a model, by means of a comparator. A
trap property is a temporal property dedicated to achieving a given coverage. For example,
claiming that a particular (reachable) state cannot be reached achieves the coverage of that
state. Depending on which coverage criteria are targeted, a set of trap properties is chosen
accordingly. Here, a set P of trap properties is computed for the model before change, and a
set P’, achieving the same coverage, is computed for the model after change. The new tests
are obtained by model-checking trap properties in the difference P 6= P’.

Focus on Model Changes. This method proceeds by automatically rewriting the prop-
erty and the model before the model-checker is called. The principle of the rewriting is as
follows: Rewriting of the model: a boolean variable named change is added to the model (in
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fact, one boolean variable change is added per change). The change variable is initialized to
false, and it takes the true value when the change occurs. It keeps the true value afterwards.
Rewriting of the property: all temporal operators in the formula are re-written to include
an implication on the change variable. This achieves that only such counter examples are
created that include the changed transition.

Attack approach

Usually models that are used for the test generation are supposed to be correct and attack-
resistant. In an attack-driven approach, a common practice is to downgrade the model so that
he might actually contain an error that can be revealed by an attack. Figure 2.3 illustrates
this principle.

Figure 2.3: Model modification to accept attacks

The model modification makes it possible to play attack scenarios on the model so that
the response provides an observable answer to the attack. Once a test representing the attack
is actually played on the SUT, if this latter reacts as the modified model, then the SUT
presents a weakness.

This approach is called mutation-based testing [24]. Mutations that are introduced are
done according to a fault model. It may represent simple syntactical modifications (e.g.
replacement of mathematical operators) or more complex ones, motivated by the semantics
of the considered model/system.

The modified model is then used in a standard test generation process. Nevertheless, the
mutation guides the test generation so as to be able, at test case generation time, to focus on
introduced errors [38]. [37] present notions of relevance of test cases w.r.t. (possibly security)
properties, based on their error detection capabilities.

In [79], authors present a set of security mutations in access control policies express in
OrBAC, it can be used to drive the test generation. In this context, generated tests will be
dedicated to requesting, in specific configurations, access to secure data that should be denied
by a safe system. The success of the access, and thus, the revealing of the secret, makes it
possible to conclude on the presence on errors in the SUT.

In terms of mutation testing for system security robustness, a preliminary work has been
done by mutating the model as to simulate environment perturbations that the system has
to respond [25]. This kind of mutation can be classified as invasive because it involves non-
functional aspects of the SUT.

A related work has be done by [59], based on fault-injection techniques. The idea is
to introduce security errors in UMLsec models [58], and to use the UMLsec analysis tools
(model-checkers, etc.) to build traces leading to the error. These traces are then used as
test cases that are concretized to be executed on the system. The mutations performed are
based on adding vulnerabilities in the model, such as missing plausible checks or wrong use
of identities, originating from [8].

D7.1 Eval. Methods & Principles | version 6.4 | page 23 / 50



Recently, an overview of possible vulnerability leaks that may appear in systems, in-
cluding buffer overflows, SQL injection techniques, etc. This team, in the context of the
European project SHIELDS (FP7/2007-203), has proposed a model of vulnerabilities causes,
named Vulnerability Cause Graph (VCG), from which is derived a formalism called Vulner-
ability Detection Condition (VDC) aiming to automatically test the source code to detect
vulnerabilities. This test generation is done by the TestIng [18] tool.
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3. WP7 Background

In the context of MBT functional and security testing, WP7 partners (INRIA, SMA, UIB)
have developed techniques that are considered as the background technology for the Secure
Change project. The following sections will provide details on BZTT, Smartesting Test
Designer and Telling TestStories.

3.1 Test generation using symbolic animation (BZTT)

We present in this section the BZ-Testing-Tools approach (BZTT) [4, 14], industrialized by
the Smartesting company as Test Designer.

3.1.1 Symbolic Animation of B Models

For the test generation approaches to be relevant, it is mandatory to ensure that the model
behaves as expected, since the system will be checked against the model. Model animation
is thus used for ensuring that the model behaves as described in the initial requirements.
This step is done in a semi-automated way, by using a dedicated tool –a model animator–
with which the validation engineer interacts. Concretely, the user chooses which operation
he wants to invoke. Depending on the current state of the system and the values of the
parameters, the animator computes and displays the resulting states that can be obtained.
By comparing these states with the informal specification, the user can evaluate its model
and correct it if necessary. This process is complementary to the verification that involves
properties that have to be formally verified on the model.

The symbolic animation improves the “classical” model animation by giving the possibility
to abstract the operation parameters. Once a parameter is abstracted, it is replaced by
a symbolic variable that is handled by dedicated constraints solvers. Abstracting all the
parameter values turns out to consider each operation as a set of “behaviors", that are the
basis from which symbolic animation can be performed [14].

Definition of the Behaviors

A behavior is a part of an operation that represents one possible way of executing the op-
eration, in terms of resulting activated effect. Each behavior can be defined as a predicate,
representing its activation condition, and a substitution that represents its effect, namely the
evolution of the state variables and the instantiation of the return parameters of the opera-
tion. The behaviors are computed as the paths in the control flow graph of the considered
B operation, represented as a before-after predicate1.

1A before-after predicate is a predicate involving state variables before the operation and after, using a
primed notation.
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Figure 3.1: B code and control-flow graph of the VERIFY_PIN command

Example 1 (Computation of behaviors) Consider a smart card command, named VER-
IFY_PIN aiming at checking a PIN code proposed in parameter against the PIN code of the
card. As for every smart card commands, this command returns a code, named sw for status
word, that indicates whether the operation succeeded or not, and possibly indicating the cause
of the failure. The precondition specifies the typing information on the parameter p (a four
digit number). First, the command can not succeed if there are no remaining tries on the
card and if the current PIN code of the card has been previously set. If the PIN codes match,
the card holder is authentified, otherwise there are two cases: either there are enough tries
on the card, and the returned status word indicates that the PIN is wrong, or the holder has
performed his last try, and the status word indicates that the card is now blocked. This oper-
ation is given in Figure 3.1, along with its control flow graph representation. This command
presents four behaviors, that are made of the conjunction of the predicates on the edges of
a given path, that is denoted by the sequence of nodes from 1 to 0. For example, behavior
[1,2,3,4,0], defined by predicate p ∈ 0..9999 ∧ tries > 0 ∧ pin 6= −1 ∧ p = pin ∧ auth′ =
true∧tries′ = max_tries∧sw = ok represents a successful authentication of the card holder.
In this predicate, X ′ designates the value of variable X after the execution of the operation.

Use of the Behaviors for the Symbolic Animation

When performing the symbolic animation of a B model, the operation parameters are ab-
stracted and thus, the operations are considered through their behaviors. Each parameter is
thus replaced by a symbolic variable whose value is managed by a constraint solver.

Definition 2 (Constraint Satisfaction Problem (CSP)) A Constraint Satisfaction Prob-
lem is a triplet 〈X,D,C〉 in which
- X = {X1, . . . , XN} is a set of N variables,
- D = {D1, . . . , DN} is a set of domains associated to each variable (Xi ∈ Di),
- C is a set of constraints that relate variable values altogether
A CSP is said to be consistent if there exists at least one valuation of the variables in X that
satisfies the constraints of C. It is inconsistent otherwise.

Activating a transition from a given state is equivalent to solving a CSP whose variables X
are given by the state variables of the current state (i.e., the state from which the transition
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is activated), the state variables of after state (i.e., the state reached by the activation of
the transition) and the parameters of the operation. Accordingly to the B semantics, the
domain D of the variables can be found in the invariant of the machine (resp. in the pre-
condition of the operation) for the state variables (resp. for the operation parameters). The
contraints C are the predicates composing the behavior that is being activated, enriched with
equalities between the before and after variables that are not assigned within the considered
behavior.

The feasibility of a transition is defined by the consistency of the CSP associated to the
activation of the transition from a given state. The iteration over the possible activable
behaviors is done by performing a depth-first exploration of the behavior graph.

Example 2 (Behavior activation) Consider the activation of the VERIFY_PIN opera-
tion given in Example 1. Suppose the activation of this operation from the state s1 defined
by: tries = 2, auth = false, pin = 1234. Two behaviors can be activated. The first one
corresponds to an invocation ok ← VERIFY_PIN(1234) that covers path [1,2,3,4,0], and pro-
duces the following consistent CSP (notice that data domains have been reduced so as to give
the most human-readable representation of the corresponding states):

CSP1 = 〈{tries, auth, pin, p, tries′, auth′, pin′, sw},
{{2}, {false}, {1234}, {1234}, {3}, {true}, {1234}, {ok}},
{Inv, Inv′, tries > 0, pin 6= −1, p = pin, tries′ = 3,

auth′ = true, pin′ = pin, sw = ok}〉

(3.1)

where Inv (resp. Inv′) designates the constraints from the machine invariant that apply on
the variables before (resp. after) the activation of the behavior. The second activable behavior
corresponds to an invocation wrong_pin ← VERIFY_PIN(p), that covers path [1,2,3,5,6,8,0]
and produces the following consistent CSP:

CSP2 = 〈{tries, auth, pin, p, tries′, auth′, pin′, sw},
{{2}, {false}, {1234}, 0..1233 ∪ 1235..9999, {1}, {false}, {1234}, {wrong_pin}},
{Inv, Inv′, tries > 0, pin 6= −1, p 6= pin, tries′ = tries− 1,

auth′ = false, tries 6= 1, pin′ = pin, sw = wrong_pin}〉
(3.2)

State variables may also become symbolic variables, if their after value is related to the
value of a symbolic parameter. A variable is said to be symbolic if the domain of the variable
contains more than one value. A system state that contains at least one symbolic state
variable is said to be a symbolic state (by opposition to a concrete state).

Example 3 (Computation of Symbolic States) Consider the SET_PIN operation that sets
the value of the PIN on a smart card:

sw ← SET_PIN(p) =̂
PRE p ∈ 0..9999 THEN

IF pin = -1 THEN pin := p ‖ sw := ok
ELSE sw := wrong_mode
END

END

From the initial state, in which auth = false, tries = 3 and pin = -1, the SET_PIN
operation can be activated to produce a symbolic state associated to the following CSP:
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CSP0 = 〈{tries, auth, pin, p, tries′, auth′, pin′, sw},
{{3}, {false}, {−1}, 0..9999, {3}, {false}, 0..9999, {ok}},
{Inv, Inv′, pin = −1, pin′ = p, sw = ok}〉

(3.3)

The symbolic animation process works by exploring the successive behaviors of the consid-
ered operations. When two operations have to be chained, this process acts as an exploration
of the possible combinations of successive behaviors for each operation.

In practice, the selection of the behaviors to be activated is done in a transparent manner
and the enumeration of the possible combinations of behaviors chaining is explored using
backtracking mechanisms. For animating B models, we use CLPS-BZ [13], a set-theoretical
constraint solver written in SICStus Prolog [78] that is able to handle a large subset of the
data structures existing in the B machines (sets, relations, functions, integers, atoms, etc.).

Once the sequence has been played, the remaining symbolic parameters can be instantiated
by a simple labeling procedure, that consists in solving the constraints system and producing
an instantiation of the symbolic variables, obtaining an abstract test case.

It is important to notice that constraint solvers work with an internal representation of
constraints (involving constraint graphs and/or polyhedra calculi for relating variable values
altogether). Nevertheless, consistency algorithms used to acquire and propagate constraints
are not sufficient to ensure the consistency of a set of constraints, and a labelling procedure
always has to be employed to guarantee the existence of solutions in a CSP associated to a
symbolic state.

The use of symbolic techniques avoids the complete enumeration of the concrete states
when animating the model. It thus makes it possible to deal with large models, that represent
billions of concrete states, by gathering them into symbolic states.

We now describe the use of symbolic animation for the generation of test cases.

3.1.2 Test Generation

We present in this section the use of the symbolic animation for automating the generation
of model-based test cases. This technique aims at a structural coverage of the transitions of
the system. To make it simple, each behavior of each operation of the B machine is targeted;
the test cases thus aim at covering all the behaviors. In addition, a symbolic representation
of the system states makes it possible to perform a boundary analysis from which the test
targets will result [64, 3]. This technique is recognized as a pertinent heuristics for generating
test data [9].

The tests that we propose are made of four parts, as illustrated in Figure 3.2. The first
part, called preamble, is a sequence of operations that brings the system from the initial state
to a state in which the test target, namely a state from which the considered behavior can be
activated, is reached. The body is the activation of the behavior itself. Then, the identification
phase is made of user-defined calls to observation operations, that are supposed to retrieve
internal values of the system so that they can be compared to model data in order to establish

Figure 3.2: Composition of a Test Case
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the conformance verdict of the test. Finally, the postamble phase is similar to the preamble,
but it brings the system back to the initial state or to another state that reaches another
test target. The latter part is important to chain the test cases. It is especially used when
testing embedded systems, since the execution of the tests on the system is very costly and
such systems take usually much time to be reseted by hand.

This automated test generation technique requires some testability hypotheses to be em-
ployed. First, the operations of the B machine have to represent the control points of the
system to be tested, so as to ease the concretization of the test cases. Second, it is mandatory
that the concrete data of the SUT can be compared to the abstract data of the model, so
as to be able to compare the results produced by the execution of the test cases with the
results predicted by the model. Third, the SUT has to provide observation points that can
be modeled in the B machine (either by return values of operations, such as the status words
in the smart cards, or by observation operations).

We will now describe how the test cases can be automatically computed, namely how the
test targets are extracted from the B machine, and how the test preambles, and postambles,
are computed.

Extraction of the Test Targets

The goal of the tests is to verify that the behaviors described in the model exist in the SUT
and produce the same result. To achieve that, each test will focus on one specific behavior
of an operation. Test targets are defined as the states from which a given behavior can
be activated. These test targets are computed so as to satisfy a structural coverage of the
machine operations.

Definition 3 (Test Target) Let OP = 〈(Act1,Eff1)[] . . . [](ActN ,EffN )〉 be the set of behav-
iors extracted from operation OP , in which Acti denotes the activation condition of behavior
i, Effi denotes its effect, and [] is an operator of choice between behaviors. Let Inv be the
machine invariant. A test target is defined by a predicate that characterizes the states of the
invariant from which a behavior i can be activated: Inv ∧ Acti.

The use of underlying constraint solving techniques makes it possible to provide interesting
possibilities for data coverage criteria. In particular, we are able to perform a boundary
analysis of the behaviors of the model. Concretely, we will consider boundary goals, that are
states of the model for which at least one of the state variable is at an extremum (minimum
or maximum) of its current domain.

Definition 4 (Boundary Goal) Let minimize(V,C) (resp. maximize(V,C)) be a func-
tion that instantiates a symbolic variable V to its minimal value (resp. its maximal value),
under the constraints given in C. Let Acti be the activation condition of behavior i, let ~P
be the parameters of the corresponding operation, and let ~V be the set of state variables that
occur in behavior i, the boundary goals for the variables ~V are computed by:

BGmin = minimize(f(~V ), Inv ∧ ∃~P .Acti)
BGmax = maximize(f(~V ), Inv ∧ ∃~P .Acti)

in which f is an optimization function that depends on the type of the variable:
if ~X is a set of integers, f( ~X) =

∑
x∈ ~X x

if ~X is a set of sets, f( ~X) =
∑

x∈ ~X card(x)
otherwise, f( ~X) = 1
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N̊ Rewriting of P1 ∨ P2 Coverage criterion
1 P1 ∨ P2 Decision Coverage (DC)
2 P1 [] P2 Condition/Decision Coverage (C/DC)
3 P1 ∧ ¬P2 [] ¬P1 ∧ P2 Full Predicate Coverage (FPC)
4 P1 ∧ P2 [] P1 ∧ ¬P2 [] ¬P1 ∧ P2 Multiple Condition Coverage (MCC)

Table 3.1: Decision coverage criteria depending on rewritings

Example 4 (Boundary test targets) Consider behavior [1,2,3,4,5,0] from the VERIFY_PIN
operation presented in Figure 3.1. The machine invariant gives the following typing informa-
tions:

Inv =̂ tries ∈ 0..3 ∧ pin ∈ −1..9999 ∧ auth ∈ {true, false}

The boundary test targets are computed using the minimization/maximization formulas:

BGmin = minimize(tries+ pin, Inv ∧ ∃p ∈ 0..9999.(tries > 0 ∧ pin 6= −1 ∧ pin = p))
 tries = 1, pin = 0

BGmax = maximize(tries+ pin, Inv ∧ ∃p ∈ 0..9999.(tries > 0 ∧ pin 6= −1 ∧ pin = p))
 tries = 3, pin = 9999

In order to improve the coverage of the operations, a predicate coverage criterion [67] can
be applied by the validation engineer. This criterion acts as a rewriting of the disjunctions in
the decisions of the B machine. Four rewritings are possible, that make it possible to satisfy
different specification coverage criteria [67], as given in Table 3.1.

Rewriting 1 leaves the disjunction unmodified. Thus, the Decision Coverage criterion
will be satisfied if a test target satisfies either P1 or P2 indifferently (also satisfying the
Condition Coverage (CC) criterion). Rewriting 2 produces two test targets, one considering
the satisfaction of P1, the other the satisfaction of P2. Rewriting 3 will also produce two
test targets, considering an exclusive satisfaction of P1 without P2 and vice-versa. Finally,
Rewriting 4 produces three test targets that will cover all the possibilities to satisfy the
disjunctions.

Notice that the consistency of the resulting test targets is checked so as to eliminate
inconsistent test targets.

Example 5 (Decision coverage) Consider behavior [1,2,9,0] from operation VERIFY_PIN
presented in Figure 3.1. The selection of the Multiple Condition Coverage criterion will
produce the following test targets:

1. Inv ∧ ∃p ∈ 0..9999 . (tries ≤ 0 ∧ pin = −1)
2. Inv ∧ ∃p ∈ 0..9999 . (tries > 0 ∧ pin = −1)
3. Inv ∧ ∃p ∈ 0..9999 . (tries ≤ 0 ∧ pin 6= −1)

providing contexts from which boundary goals will then be computed.

We now describe how these targets are reached by symbolic animation by computation of
the test preamble.

Computation of the Test Cases

Once the test targets and boundary goals are defined, the idea is to employ symbolic animation
in an automated manner that will aim at reaching each target. To achieve that, a state
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SeqOp ← compute_preamble(Depth, Target)
begin
s_init ← initialize ;
Seq_curr ← [init] ;
dist_init ← compute_distance(Target,s_init) ;
visited ← [〈 s_init, Seq_curr, dist_init 〉] ;
while visited 6= [] do
〈 s_curr, Seq_curr, MinDist 〉 ← remove_minimal_distance(visited) ;
if length(Seq_curr) < Depth then

[(s_1, Seq_1), . . . , (s_N,Seq_N)] ← compute_successors((s_curr, Seq_curr)) ;
for each (s_i, Seq_i) ∈ [(s_1, Seq_1), . . . , (s_N,Seq_N)] do
dist_i ← compute_distance(Target,s_i) ;
if dist_i = 0 then

return Seq_i;
else

visited ← visited ∪ (s_i, Seq_i, dist_i) ;
end if

done
end if

done
return [];

end

Figure 3.3: State exploration algorithm

exploration algorithm, variant of the A* path-finding algorithm and based on a Best-First
exploration of the system states, has been developed.

This algorithm aims at finding automatically a path, from the initial state, that will reach
a given set of states characterized by a predicate. A sketch of the algorithm is given in
Figure 3.3. From a given state, the symbolic successors, through each behavior, are com-
puted using symbolic animation (procedure compute_successors). Each of these successors
is then evaluated to compute the distance to the target. This latter is based on a heuristics
that considers the “distance” between the current state and the targeted states (procedure
compute_distance). To do that, the sum of the distances between each state variable is con-
sidered; if the domains of the two variables intersect, then the distance for these variables is 0,
otherwise a customized formula, involving the type of the variable and the size of the domains,
computes the distance (see [21] for more details). The computation of the sequence restarts
from the most relevant state, i.e., the one presenting the smallest distance to the target (pro-
cedure remove_minimal_distance returning the most interesting triplet 〈state, sequence of
behaviors, distance〉 and removing it from the list of visited states). The algorithm starts
with the initial state (denoted by s_init and obtained by initializing the variables according
to the INITIALIZATION clause of the machine denoted by the initialize function). It
ends if a zero-distance state is reached by the current sequence, or if all sequences have been
explored for a given depth.

Since reachability of the test targets can not be decided, this algorithm is bounded in
depth. Its worst case complexity is O(nd) where n is the number of behaviors in all the
operations of the machine and d is the depth of the exploration (maximal length of test
sequence). Nevertheless, the heuristics consisting in computing the distance between the
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states explored and the targeted states to select the most relevant states improves the practical
results of the algorithm.

The computation of the preambule ends for three possible reasons. It may have found the
target, and thus, the path is returned as a sequence of behaviors. Notice that, in practice,
this path is often the shortest from the initial state, but it is not always the case because
of the heuristics used in during the search. The algorithm may also end by stating that the
target has not been reached. This can be due to the fact that the exploration depth was too
small, but it may also be due to the unreachability of the target.

Example 6 (Reachability of the test targets) Consider the three targets given in Ex-
ample 5. The last two can easily be reached. Target 2 can be reached by setting the value
of the PIN, and Target 3 can be reached by setting the value of the PIN, followed by three
successive authentication failures.

Nevertheless, the first target will never be reached since the decrementation of the tries
can only be done if pin 6= -1. In order to avoid considering unreachable targets, the machine
invariant has to be complete enough to catch at best the reachable states of the system, or,
at least, to exclude unreachable states. In the example, completing the invariant by: pin =
−1 ⇒ tries = 3 makes Target 1 inconsistent, and thus, removes it from the test generation
process.

The sequence returned by the algorithm represents the preamble, to which is concatenated
the invocation of the considered behavior (representing the test body). If operation parame-
ters are still constrained, they are also minimized or maximized, for their instantiation. The
observation operations are specified by hand, and the (optional) postamble is computed on
the same principle as the preamble.

3.2 Test Designer (TD)

Test Designer, from Smartesting, is a commercially available model-based testing tool ded-
icated to IT applications, secure electronic transactions and packaged applications such as
SAP or Oracle E-Business Suite.

Test Designer implements concepts presented in the previous section based on a before/after
semantics, symbolic animation and preamble computation on a subset of UML/OCL notation
[15].
Test cases are generated from a behavior model of the SUT, using requirement coverage and
custom scenarios as test selection criteria. Test Designer models are written in a subset of
standard UML (class and object diagrams as well as state machine diagrams, with OCL an-
notations). Test Designer supports both a transition-based modeling style (i.e. UML State
Machines) and a Pre/Post style (i.e. OCL).
Model elements such as transitions and OCL decisions can be linked to the informal require-
ments that they cover. Test coverage can then be based on requirements coverage. A range of
structural model coverage criteria are also supported, such as transition, decision and effect
coverage. The test engineer may also define business scenarios as custom test case specifica-
tions that use the UML operations. Test Designer supports both manual and automated test
execution, using an offline approach. The generated test cases can be output to test manage-
ment systems like HP Quality Center or IBM Rational Quality Manager, with bidirectional
traceability and full change management for evolving requirements.
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Now, we illustrate how Test Designer can be used to model and test the actiTIME application
(www.actitime.com).

actiTIME is a time tracking application freely available on the web. In this section, we use
this application to demonstrate the various steps of deploying the MBT process. We illustrate
it with Test Designer from Smartesting, which is a model-based testing solution dedicated to
enterprise IT applications, secure electronic transactions and packaged applications such as
SAP or Oracle E-Business Suite. Test cases are generated from a behavior model of the SUT,
using requirements coverage and custom scenarios as test selection criteria. Test Designer
models are written in a subset of standard UML.
Test Designer supports both manual and automated test execution, using an offline approach.
The generated test cases can be output to test management systems like HP Quality Center,
IBM Rational Quality Manager or the open-source tool TestLink, with bidirectional trace-
ability and full change management for evolving requirements.

3.2.1 actiTIME overview

actiTIME is a time management program developed by Actimind. Details about its features,
and free downloads, can be found on the website www.actitime.com. Ordinary users have
access to their time track for input, review and corrections. They can also manage projects
and tasks, do some reporting and of course they can manage their account (see (1) in Figure
3.4).
In our sample model we focus on the user time-tracking features of actiTIME version 1.5;
after logging into the system the user can specify how much time he spent on a specific task.
A typical scenario is as follows:

1. access a time-track;

2. display the time-entry form;

3. type in the hours spent on assigned tasks;

4. the system warns the user that modifications are not saved yet;

5. save the modifications;

6. in case of overtime, the system displays an error message.

3.2.2 actiTIME requirements

In actiTIME a user may have administrator rights. Only administrators can add and remove
projects. For a specific project, a user can add or remove tasks, enter the number of hours
they spent on a task, etc. To precisely define the expected functional requirements of the
actiTIME feature that we model, a list of requirements is defined in Table 3.2. The IDs are
useful as they allow you to see in the test repository which requirements are covered by each
of the generated tests.

3.2.3 actiTIME test model

The test model represents the expected behavior of the application, covering the requirements
of Table 3.2. It is based on three UML diagrams (see Figure 3.5, Figure 3.6 and Figure 3.7):

• the class diagram represents the business entities and the user actions to be tested;
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Figure 3.4: actiTIME user interface

Requirement Id Requirement Description
ADMIN/ADD_PROJECT An administrator can add a new

project into the system. A project
is linked to a customer and includes
several tasks.

ADMIN/DELETE_PROJECT An administrator can delete a
project from the system.

LOGIN When the user try to log on with an
incorrect username or password an
error message is displayed.

USER/ENTER_TIME A user can enter the number of hours
spent on his assigned tasks for one or
several days.

USER/REMOVE_TIME A user can correct the number of
hours spent on a task by removing
some time.

USER/SAVE_TIME After modifying its time-track, the
user can save the changes.

USER/SHOW_TIME_TRACKING A user can display its time-track
consolidation for any month.

USER/VIEW_TIME_TRACK A user can display its time-track for
the current week or any week, in or-
der to report its activity.

USER/WORKING_TASK A user can add or remove task from
the task list.

Table 3.2: Summary of actiTIME requirements.
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• the layered state machine represents the dynamic expected behavior;

• the instance diagram gives some test data and initial configuration of the application.

Figure 3.5: Class diagram for actiTIME test model

Figure 3.8 gives an OCL specification describing the Login operation with an invalid user
name. Notice how the requirements are linked to the specification using annotations (—@Req:
LOGIN). The annotation —@AIM gives more detail about which part of that refinement is
being modeled here.

3.2.4 Test generation with Test Designer

Figure 3.9 shows the GUI of Test Designer for the project actiTIME. A list of the generated
test cases (structured by test Suites) is displayed on the left, and the details of one test case
are displayed on the right. The details of the requirements and test aims that are covered by
a particular test step are shown in the right-hand bottom corner.

Figure 3.10 shows the generated tests published into a test repository (in this case: HP
Quality Center). These tests are ready for manual test execution. Each test is fully docu-
mented in the Design Steps Panel.

For test automation, complete script code is generated and maintained for each test case
(see Figure 3.11). The remaining (optional) task for the test automation engineer is to
implement each key-word used in UML test model so that it is defined as a sequence of lower-
level SUT actions. If this is done, the generated test scripts can be executed automatically
on the SUT. An alternative approach is to leave the key-words undefined, in which case a
human tester must execute the scripts manually.

To sum-up, we deployed on the actiTIME application a typical MBT solution for IT
applications, using a subset of UML as input language (class diagrams, state diagrams, in-
stance diagrams, and OCL specification language), providing automated test generation and
publication features both for manual and automated testing.
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Figure 3.6: High level state machine for actiTIME (partial)

Figure 3.7: Object diagram for actiTIME
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Figure 3.8: OCL specification for Login (the invalid login case).

Figure 3.9: Smartesting Test Designer user interface. Project actiTIME.
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Figure 3.10: Publication of generated tests into the test manager environment (HP Quality Center)

Figure 3.11: Publication of generated scripts into the test manager environment (HP Quality Center)
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3.3 Telling TestStories

Model-driven testing is based on the derivation of executable test code from models in a MDA
manner [89]. It supports an implementation resp. technology-independent view on testing
and the adaptation of tests to modified requirements with minor effort. This makes model-
driven testing an ideal testing strategy for service oriented systems. In such a setting various
component- and communication technologies, the dynamic adaptation and integration of
services and the unavailability of service implementations and controls have to be considered.

Telling TestStories (TTS) [30] provides a testing methodology and a framework for model-
driven system testing of service oriented systems. Compared to many other model-based
testing approaches, TTS is based on separated system and test models which are connected
via common model elements. An overview of the TTS artefacts is depicted in Figure 3.12.

The requirements model contains the specification for system development. Its formal part
consists of actors, use cases and types, denoted in a use case diagram and a class diagram.
The formal requirements are based on written or non-written informal requirements.

Figure 3.12: Overview of TTS Artefacts

The system model describes the system structure and system behavior in a platform
independent way. Its static structure is based on actors providing and requiring services and
its dynamic structure is based on global workflows modeling the behavior between actors and
local workflows modeling the behavior within actors.

The test model defines the test configuration, the test data and the test scenarios as
so called test stories. Test stories are controlled sequences of service operation invocations
exemplifying the interaction of actors. Test stories may be generic in the sense that they
do not contain concrete objects but variables which refer to test values provided in tables.
Test stories can also contain setup and tear down procedures and contain assertions for test
result evaluation. The service operations and actors of a test story are shared with the system
model.

The test implementation is generated by a model-to-text transformation explained in
[31]. It generates test code that can be executed by a test execution engine. Adapters are
needed for connecting to the system under test.
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Metamodels have been defined to define consistency and coverage criteria for the system
and the test model.

If the system model and the test model are created manually, then the framework checks
consistency between them automatically and the test model has to fulfill some coverage prop-
erties with respect to the system model. Alternatively, if the system model is complete to a
certain sense then behavioral parts of the test model can be generated or otherwise if the test
model is complete, behavioral fragments of the system model can be generated.

The metamodel elements can be mapped to UML metaclasses and can therefore be created
and edited with standard UML tools. The system model can even be mapped to SoaML and
the test model can be mapped to the UML Testing Profile which ensures compatibility with
existing standards.

A very important property of TTS is the traceability between system requirements, service
operations, test stories and the implementation. This enables the assignment of unexpected
system behavior to requirements resp. to system or test model elements. Therefore, the
system and test model can be created, transformed, executed and analyzed iteratively even
in a test-driven manner based on changing requirements and services. Furthermore, TTS
allows for the execution of tests during system development by creating mock services for
unfinished parts of a system.

D7.1 Eval. Methods & Principles | version 6.4 | page 40 / 50



4. Bottlenecks addressed by WP7

This chapter proposes an analysis of commercial tools based on the criteria identified in
Chapter 1. We also provide several research directions that will be investigated during the
project.

4.1 Evaluation of existing approachs

In chapter 1, we proposed several criteria to evaluate MBT methods with respect to change
and security aspects. In chapter 2, we introduced a state of the art for functional model-based
testing.

So, in this section, we evaluate several MBT tools with respect to these criteria. Those
tools all use as input behavioral model of the SUT and provide various test coverage criteria.
Based on the taxonomy paper [83] by Utting and al., we have selected a list of commercial
tools to be compared presented in Table 4.1 and Table 4.2.

Tools Stability of Traceability of Impact Test suite
test repository changes analysis qualification

Conformiq Qtronic 2 1 1 no qualification
Microsoft SpecExplorer 1 1 1 no qualification
Reactive Systems Reactis 2 1 1 no qualification
Smartesting Test Designer 2 1 1 no qualification

T-Vec Tool Suite 1 1 1 no qualification

Table 4.1: Change criteria applied on commercial tools

Tools Traceability of Completeness of
security properties security testing

Conformiq Qtronic 2 functional security properties only
Microsoft SpecExplorer 1 functional security properties only
Reactive Systems Reactis 1 functional security properties only
Smartesting Test Designer 2 functional security properties only

T-Vec Tool Suite 2 functional security properties only

Table 4.2: Security criteria applied on commercial tools

To sum-up, MBT methods for testing the security aspects of long-life evolving systems is
still an open subject. The issues of the stability of the generated test repository, the impact
analysis of change in relation with testing security properties, the traceability between security
properties and generated tests in the context of evolution, are not tackled by the current MBT
methods.
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4.2 Research directions for WP7

For WP7, the next step of the work is to prepare a dedicated approach based on the existing
MBT background SecureChange partners presented in this document (see Chapter 4). We
will study the evolution’s impact on model-based testing approaches with WP1 case studies.

The first research direction is on test status. With respect to the state of the art, we
will integrate the concept of test lifecycle to take into account the evolution management
meaning that the test repository must evolve with respect with requirements and SUT evo-
lutions. One of the main element of this point is the minimization of evolution’s impacts on
the test repository. We will define a lifecycle and an associated method to provide a test’s
classification based on design artefacts to ensure repository stability. Actually, there are no
tools and methods that take into account evolution. The only actual answer is to replay a
selected test on the test model. This method can only decide if a test should or should not
be kept for the following version of the software.

The second direction is the identification of evolution’s sources. To capture evolution’s
information, we will identify each kind of evolutions which impacts the testing process. We
use WP7 background to define the input artefacts and the test generation method. There
are two input artefacts : the functional model and the associated scenario. Artefacts are
produced from requirements that are used at two levels.

1. Test suites are designed based on requirement coverage criteria (e.g. functional require-
ments, security requirements, etc).

2. The traceability process relates the tests to their corresponding informal requirements.
Their evolution can be taken into account for distinguishing which tests (linked to
evolved requirements) are supposed to be replaced, and which tests (linked to unchanged
requirements) will be used for non-regression testing.

The third direction is the evaluation of the evolution’s impacts on security. Scenario will
be used to generate test with respect to security properties based on SUT expected behaviour
defined into the functional model. After the study of evolution’s impacts on the model, we
will study their impacts on the scenario.

The last direction will be the method’s application on case studies. We will model the
software behaviour of two case studies. We will be able to validate our methods and algorithms
of classifications on real-life evolving systems.
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5. Conclusion

Deliverable 7.1 provides a state of the art of MBT methods and introduces the background
technologies that constitute the starting point of the project.

We identified in the state of the art several criteria to evaluate testing approaches. We
applied the defined criteria to evaluate model-based testing approaches with respect to evo-
lution and security of systems.

We propose four research directions to take into account evolution for security. Those
research directions will be investigated during the project.

D7.1 Eval. Methods & Principles | version 6.4 | page 43 / 50



Bibliography

[1] J.R. Abrial. The B-Book. Cambridge University Press, 1996.

[2] Bernhard K. Aichernig, Harald Brandl, and Franz Wotawa. Conformance testing of
hybrid systems with qualitative reasoning models. Electron. Notes Theor. Comput. Sci.,
253(2):53–69, 2009.

[3] F. Ambert, F. Bouquet, B. Legeard, and F. Peureux. Automated boundary-value test
generation from specifications - method and tools. In 4th Int. Conf. on Software Testing,
ICSTEST 2003, pages 52–68, Cologne, Allemagne, April 2003.

[4] Fabrice Ambert, Fabrice Bouquet, Sébastien Chemin, Sébastien Guenaud, Bruno Leg-
eard, Fabien Peureux, Nicolas Vacelet, and M. Utting. BZ-TT: A tool-set for test gener-
ation from Z and B using constraint logic programming. In Proc. of Formal Approaches
to Testing of Software, FATES 2002 (workshop of CONCUR’02), pages 105–120, Brnö,
République Tchèque, August 2002. INRIA report.

[5] Paul Ammann and Paul E. Black. A specification-based coverage metric to evaluate test
sets. In HASE, pages 239–248. IEEE Computer Society, 1999.

[6] Paul Ammann, Paul E. Black, and William Majurski. Using model checking to generate
tests from specifications. In ICFEM, pages 46–, 1998.

[7] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania. Bounded model check-
ing of software using smt solvers instead of sat solvers. STTT, 11(1):69–83, 2009.

[8] Taimur Aslam, Ivan Krsul, and Eugene H. Spafford. Use of a taxonomy of security faults.
In Purdue University, pages 551–560, 1996.

[9] Boris Beizer. Software testing techniques (2nd ed.). Van Nostrand Reinhold Co., New
York, NY, USA, 1990.

[10] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. Synchronous program-
ming with events and relations: the signal language and its semantics. Sci. Comput.
Program., 16(2):103–149, 1991.

[11] Ottmar Beucher. MATLAB und Simulink (Scientific Computing). Pearson Studium, 08
2006.

[12] Robert V. Binder. Testing object-oriented systems: models, patterns, and tools. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[13] F. Bouquet, B. Legeard, and F. Peureux. CLPS-B: A constraint solver to animate a B
specification. International Journal on Software Tools for Technology Transfer, STTT,
6(2):143–157, August 2004.

D7.1 Eval. Methods & Principles | version 6.4 | page 44 / 50



[14] F. Bouquet, B. Legeard, M. Utting, and N. Vacelet. Faster analysis of formal specifi-
cations. In J. Davies, W. Schulte, and M. Barnett, editors, 6th Int. Conf. on Formal
Engineering Methods (ICFEM’04), volume 3308 of LNCS, pages 239–258, Seattle, WA,
USA, November 2004. Springer-Verlag.

[15] Fabrice Bouquet, Christophe Grandpierre, Bruno Legeard, and Fabien Peureux. A test
generation solution to automate software testing. In AST’08, 3rd Int. workshop on
Automation of Software Test, pages 45–48, Leipzig, Germany, May 2008. ACM Press.

[16] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry, Gary T.
Leavens, K. Rustan M. Leino, and Erik Poll. An overview of jml tools and applications.
Int. J. Softw. Tools Technol. Transf., 7(3):212–232, 2005.

[17] Jens R. Calamé, Natalia Ioustinova, and Jaco van de Pol. Automatic Model-Based
Generation of Parameterized Test Cases Using Data Abstraction. In J. Romijn, G. Smith,
and J. van de Pol, editors, Proceedings of the Doctoral Symposium affiliated with the Fifth
Integrated Formal Methods Conference (IFM 2005), volume 191 of Electronic Notes in
Computer Science, pages 25–48. Elsevier, October 2007.

[18] Ana Rosa Cavalli, Edgardo Montes De Oca, Wissam Mallouli, and Mounir Lallali. Two
complementary tools for the formal testing of distributed systems with time constraints.
In DS-RT ’08: Proceedings of the 2008 12th IEEE/ACM International Symposium on
Distributed Simulation and Real-Time Applications, pages 315–318, Washington, DC,
USA, 2008. IEEE Computer Society.

[19] Yanping Chen, Robert L. Probert, and Hasan Ural. Model-based regression test suite
generation using dependence analysis. In A-MOST ’07: Proceedings of the 3rd interna-
tional workshop on Advances in model-based testing, pages 54–62, New York, NY, USA,
2007. ACM.

[20] Yih-Farn Chen, David S. Rosenblum, and Kiem-Phong Vo. Testtube: a system for
selective regression testing. In ICSE ’94: Proceedings of the 16th international conference
on Software engineering, pages 211–220, Los Alamitos, CA, USA, 1994. IEEE Computer
Society Press.

[21] S. Colin, B. Legeard, and F. Peureux. Preamble Computation in Automated Test Case
Generation using Constraint Logic Programming. The Journal of Software Testing,
Verification and Reliability, 14(3):213–235, 2004.

[22] Frédéric Dadeau and Régis Tissot. jsynopsys – a scenario-based testing tool based on the
symbolic animation of b machines. Electron. Notes Theor. Comput. Sci., 253(2):117–132,
2009.

[23] David Delmas and Jean Souyris. Astrée: From research to industry. In Hanne Riis
Nielson and Gilberto Filé, editors, Static Analysis, 14th International Symposium, SAS
2007, volume 4634 of Lecture Notes in Computer Science, pages 437–451. Springer, 2007.

[24] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for
the practicing programmer. Computer, 11(4):34–41, 1978.

[25] Wenliang Du and Aditya P. Mathur. Testing for software vulnerability using environ-
ment perturbation. In DSN ’00: Proceedings of the 2000 International Conference on
Dependable Systems and Networks (formerly FTCS-30 and DCCA-8), pages 603–612,
Washington, DC, USA, 2000. IEEE Computer Society.

D7.1 Eval. Methods & Principles | version 6.4 | page 45 / 50



[26] Bruno Dutertre and Maria Sorea. Timed systems in sal. Technical report, Computer
Science Laboratory, 2004.

[27] The eclipse foundation, eclipse test and performance tool platform project.

[28] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. Prioritizing test cases
for regression testing. SIGSOFT Softw. Eng. Notes, 25(5):102–112, 2000.

[29] Institute O. Electrical and Electronics E. (ieee). IEEE 90: IEEE Standard Glossary of
Software Engineering Terminology. 1990.

[30] M. Felderer, R. Breu, J. Chimiak-Opoka, M. Breu, and F. Schupp. Concepts for Model-
based Requirements Testing of Service Oriented Systems. In Proceedings of the IASTED
International Conference, volume 642, page 018, 2009.

[31] M. Felderer, F. Fiedler, P. Zech, , and R. Breu. Flexible Test Code Generation for Service
Oriented Systems. 2009. QSIC’2009.

[32] Michael Felderer, Berthold Agreiter, Ruth Breu, and Alvaro Armenteros. Security testing
by telling teststories. In Gregor Engels, Dimitris Karagiannis, and Heinrich C. Mayr,
editors, Modellierung 2010, volume 161 of LNI, pages 195–202. GI, 2010.

[33] Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Laurent Mounier, Radu Ma-
teescu, and Mihaela Sighireanu. Cadp - a protocol validation and verification toolbox.
In CAV ’96: Proceedings of the 8th International Conference on Computer Aided Veri-
fication, pages 437–440, London, UK, 1996. Springer-Verlag.

[34] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph
and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349, 1987.

[35] Martin Fränzle and Christian Herde. Hysat: An efficient proof engine for bounded model
checking of hybrid systems. Form. Methods Syst. Des., 30(3):179–198, 2007.

[36] Gordon Fraser, Bernhard K. Aichernig, and Franz Wotawa. Handling model changes:
Regression testing and test-suite update with model-checkers. Electr. Notes Theor. Com-
put. Sci., 190(2):33–46, 2007.

[37] Gordon Fraser and Franz Wotawa. Property relevant software testing with model-
checkers. SIGSOFT Softw. Eng. Notes, 31(6):1–10, 2006.

[38] Gordon Fraser and Franz Wotawa. Using model-checkers for mutation-based test-case
generation, coverage analysis and specification analysis. In ICSEA ’06: Proceedings of
the International Conference on Software Engineering Advances, page 16, Washington,
DC, USA, 2006. IEEE Computer Society.

[39] Gallio automation platform.

[40] Angelo Gargantini and Constance Heitmeyer. Using model checking to generate tests
from requirements specifications. SIGSOFT Softw. Eng. Notes, 24(6):146–162, 1999.

[41] M.-C. Gaudel and P. R. James. Testing algebraic data types and processes: a unifying
theory. Formal Aspects of Computing, 10(5-6):436–451, 1998.

D7.1 Eval. Methods & Principles | version 6.4 | page 46 / 50



[42] Arnaud Gotlieb. Euclide: A constraint-based testing framework for critical c programs.
Software Testing, Verification, and Validation, 2008 International Conference on, 0:151–
160, 2009.

[43] Eric Goubault, Matthieu Martel, and Sylvie Putot. Asserting the precision of floating-
point computations: A simple abstract interpreter. In ESOP ’02: Proceedings of the 11th
European Symposium on Programming Languages and Systems, pages 209–212, London,
UK, 2002. Springer-Verlag.

[44] Thorsten Grotker. System Design with SystemC. Kluwer Academic Publishers, Norwell,
MA, USA, 2002.

[45] Paul Le Guernic, Paul Le Guernic, Jean-Pierre Talpin, Jean pierre Talpin, Jean-
Christophe Le Lann, Jean christophe Le Lann, and Projet Espresso. Polychrony for
system design. Journal for Circuits, Systems and Computers, 12:261–304, 2002.

[46] David Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Pro-
gram., 8(3):231–274, 1987.

[47] David Harel and P. S. Thiagarajan. Message sequence charts. pages 77–105, 2003.

[48] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-toi. Hytech: A model checker
for hybrid systems. Software Tools for Technology Transfer, 1:460–463, 1997.

[49] Gerard J. Holzmann. Design and validation of computer protocols. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1991.

[50] Ibm rational quality manager.

[51] IEEE Computer Society. Software Engineering Body of Knowledge (SWEBOK). Angela
Burgess, 2004.

[52] Claude Jard and Thierry J&#x00e9;ron. Tgv: theory, principles and algorithms: A
tool for the automatic synthesis of conformance test cases for non-deterministic reactive
systems. Int. J. Softw. Tools Technol. Transf., 7(4):297–315, 2005.

[53] Dennis Jeffrey and Neelam Gupta. Test suite reduction with selective redundancy. In
ICSM ’05: Proceedings of the 21st IEEE International Conference on Software Mainte-
nance, pages 549–558, Washington, DC, USA, 2005. IEEE Computer Society.

[54] Thierry Jéron. Symbolic model-based test selection. Electron. Notes Theor. Comput.
Sci., 240:167–184, 2009.

[55] Cliff B. Jones. Systematic software development using VDM (2nd ed.). Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1990.

[56] Jacques Julliand, Pierre-Alain Masson, and Régis Tissot. Generating security tests in
addition to functional tests. In AST’08, 3rd Int. workshop on Automation of Software
Test, pages 41–44, Leipzig, Germany, May 2008. ACM Press.

[57] Jacques Julliand, Pierre-Alain Masson, and Régis Tissot. Generating tests from B spec-
ifications and test purposes. In ABZ’2008, Int. Conf. on ASM, B and Z, volume 5238 of
LNCS, pages 139–152, London, UK, September 2008. Springer.

D7.1 Eval. Methods & Principles | version 6.4 | page 47 / 50



[58] Jan Jürjens. Umlsec: Extending uml for secure systems development. In UML ’02:
Proceedings of the 5th International Conference on The Unified Modeling Language, pages
412–425, London, UK, 2002. Springer-Verlag.

[59] Jan Jürjens. Model-based security testing using umlsec. Electron. Notes Theor. Comput.
Sci., 220(1):93–104, 2008.

[60] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism: Probabilistic symbolic
model checker. In Computer Software, pages 200–204. Springer, 2002.

[61] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell, 1997.

[62] Yves Ledru, Lydie du Bousquet, Olivier Maury, and Pierre Bontron. Filtering tobias
combinatorial test suites. In Michel Wermelinger and Tiziana Margaria, editors, Funda-
mental Approaches to Software Engineering, 7th International Conference, FASE 2004,
volume 2984 of Lecture Notes in Computer Science, pages 281–294. Springer, 2004.

[63] D. Lee and M. Yannakakis. Testing finite-state machines: State identification and veri-
fication. IEEE Transactions on Computers, 43:306–320, 1994.

[64] B. Legeard, F. Peureux, and M. Utting. Automated boundary testing from Z and B.
In Proc. of the Int. Conf. on Formal Methods Europe, FME’02, volume 2391 of LNCS,
pages 21–40, Copenhaguen, Denmark, July 2002. Springer.

[65] Bruno Marre and Agnès Arnould. Test sequences generation from lustre descriptions:
Gatel. In ASE, pages 229–, 2000.

[66] Glenford J. Myers and Corey Sandler. The Art of Software Testing. John Wiley & Sons,
2004.

[67] A.J. Offutt, Y. Xiong, and S. Liu. Criteria for generating specification-based tests.
In Proceedings of the 5th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS’99), pages 119–131, Las Vegas, USA, October 1999. IEEE
Computer Society Press.

[68] I. Parissis. A Formal Approach to Testing LUSTRE Specifications. In Proceedings of the
1st International IEEE Conference on Formal Engineering Methods, Hiroshima, Japan,
1997.

[69] S. J. Prowell. Jumbl: A tool for model-based statistical testing. In HICSS ’03: Proceed-
ings of the 36th Annual Hawaii International Conference on System Sciences (HICSS’03)
- Track 9, page 337.3, Washington, DC, USA, 2003. IEEE Computer Society.

[70] Wolfgang Reisig. Petri nets: an introduction. Springer-Verlag New York, Inc., New York,
NY, USA, 1985.

[71] Gregg Rothermel and Mary Jean Harrold. Analyzing regression test selection techniques.
IEEE Trans. Softw. Eng., 22(8):529–551, 1996.

[72] The RT builder web site.

[73] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language Refer-
ence Manual, The (2nd Edition). Pearson Higher Education, 2004.

D7.1 Eval. Methods & Principles | version 6.4 | page 48 / 50



[74] V. Rusu. Combining formal verification and conformance testing for validating reactive
systems. Journal of Software Testing, Verification, and Reliability, 13(3), September
2003.

[75] Helmut Seidl and Vesal Vojdani. Region analysis for race detection. In SAS ’09: Pro-
ceedings of the 16th International Symposium on Static Analysis, pages 171–187, Berlin,
Heidelberg, 2009. Springer-Verlag.

[76] J. M. Spivey. The Z notation: a reference manual. Prentice Hall International (UK)
Ltd., Hertfordshire, UK, UK, 1992.

[77] Amitabh Srivastava and Jay Thiagarajan. Effectively prioritizing tests in development
environment. SIGSOFT Softw. Eng. Notes, 27(4):97–106, 2002.

[78] Swedish Institute of Computer Sciences. SICStus Prolog 3.11.2 manual documents, June
2004. http://www.sics.se/sicstus.html.

[79] Yves Le Traon, Tejeddine Mouelhi, and Benoit Baudry. Testing security policies: Going
beyond functional testing. In ISSRE ’07: Proceedings of the The 18th IEEE International
Symposium on Software Reliability, pages 93–102, Washington, DC, USA, 2007. IEEE
Computer Society.

[80] Jan Tretmans. Model based testing with labelled transition systems. In Robert M.
Hierons, Jonathan P. Bowen, and Mark Harman, editors, Formal Methods and Testing,
volume 4949 of Lecture Notes in Computer Science, pages 1–38. Springer, 2008.

[81] M. Utting and B. Legeard. Practical Model-Based Testing - A tools approach. Elsevier
Science, 2006.

[82] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2006.

[83] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-based
testing. Technical report, April 2006.

[84] B. Vaysburg. Model based regression test reduction using dependence analysis. In ICSM
’02: Proceedings of the International Conference on Software Maintenance (ICSM’02),
page 214, Washington, DC, USA, 2002. IEEE Computer Society.

[85] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Precise Modeling
with UML. Addison-Wesley, 1999.

[86] W. Eric Wong, Joseph R. Horgan, Saul London, and Hira Agrawal Bellcore. A study of
effective regression testing in practice. In ISSRE ’97: Proceedings of the Eighth Interna-
tional Symposium on Software Reliability Engineering, page 264, Washington, DC, USA,
1997. IEEE Computer Society.

[87] Lihua Xu, Marcio Dias, and Debra Richardson. Generating regression tests via model
checking. In COMPSAC ’04: Proceedings of the 28th Annual International Computer
Software and Applications Conference, pages 336–341, Washington, DC, USA, 2004.
IEEE Computer Society.

[88] Qian Yang, J. Jenny Li, and David Weiss. A survey of coverage based testing tools.
In AST ’06: Proceedings of the 2006 international workshop on Automation of software
test, pages 99–103, New York, NY, USA, 2006. ACM.

D7.1 Eval. Methods & Principles | version 6.4 | page 49 / 50

http://www.sics.se/sicstus.html


[89] Justyna Zander, Zhen Ru Dai, Ina Schieferdecker, and George Din. From u2tp models to
executable tests with ttcn-3 - an approach to model driven testing. In Ferhat Khendek
and Rachida Dssouli, editors, Testing of Communicating Systems, 17th IFIP TC6/WG
6.1 International Conference, TestCom 2005, volume 3502 of Lecture Notes in Computer
Science, pages 289–303. Springer, 2005.

D7.1 Eval. Methods & Principles | version 6.4 | page 50 / 50


	Document information
	Document change record
	Executive summary
	Challenges of MBT for evolving systems
	Problems Statements
	Evaluation criteria for existing methods

	State of the Art
	Taxonomy of MBT approaches
	Overview of the Model-Based Testing Process
	Taxonomy of the MBT Approaches

	Existing Approaches
	Static Criteria
	Dynamic Criteria
	Regression Testing
	Model-Based Security Testing


	WP7 Background
	Test generation using symbolic animation (BZTT)
	Symbolic Animation of B Models
	Test Generation

	Test Designer (TD)
	actiTIME overview
	actiTIME requirements
	actiTIME test model
	Test generation with Test Designer

	Telling TestStories

	Bottlenecks addressed by WP7
	Evaluation of existing approachs
	Research directions for WP7

	Conclusion

